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ABSTRACT 

 A photothermal radiometry technique is being developed at the NPL with the goal of 

improving the accuracy of thermal diffusivity measurements.  The principle is to perform a 

laser-induced thermal experiment while simultaneously making accurate measurements of the 

experimental boundary conditions.  A numerical 3D heat diffusion model based on thermal 

transfer functions has been developed to use the measured boundary conditions.  The thermal 

diffusivity is estimated from the experimental data by a non-linear, least-squares fitting to the 

model. 

 Experiments carried out on pure metals at about 900K demonstrate good agreement 

between the theoretical and experimental data and accuracies of about 1.5% for the thermal 

diffusivities of platinum, titanium and germanium 

 

KEY WORDS: optical techniques, photothermal radiometry, laser, infrared, platinum, 

titanium, germanium, thermal diffusivity. 



1.  INTRODUCTION 

 Photothermal techniques are being developed at the NPL for the simultaneous 

measurement of temperature [1] and thermophysical properties such as emissivity, thermal 

diffusivity and thermal conductivity. This paper describes the results of recent investigations 

directed particularly at improving the accuracy of thermal diffusivity measurements. Well-

established techniques for the determination of the thermal diffusivity of solids such as the flash 

technique [2,3] or thermal wave techniques [4] often rely on simplified geometries and ideal 

boundary conditions used a priori in a mathematical model.  Systematic errors inevitably 

occur because of experimental deviations from initial assumptions [4].  In the most widely used 

technique, the laser flash technique, a uniform 1D excitation and a simple temporal pulse shape 

are assumed [2,3].  Pulsed laser beams are in essence difficult to measure and the desired 

characteristics are not always met. This may partly explain why the uncertainties reported for 

thermal diffusivity values are rarely better than a few percent, even with high purity materials. 

 We propose a new methodology, based on photothermal infrared radiometry [5], to 

measure the thermal diffusivity of materials with a better accuracy.  The principle is to detect a 

laser-induced thermal radiance signal while simultaneously making accurate measurements of 

the boundary conditions of the heat conduction problem.  In the case of a sufficiently large 

sample opaque  at the pump wavelength, the only boundary conditions are the laser beam 

profile at the surface and the time dependence of the incident intensity. 

 The excitation of the sample is achieved using a periodically scanned cw laser beam.  By 

absorption of a fraction of the incident light, a periodic temperature field is induced which in 

turn is responsible for a modulation of the thermal radiance emitted by the stimulated surface.  



 Visible and infrared optical detection are performed in the time domain to measure the 

modulated thermal radiance and the back-scattered laser light.  The modulated thermal 

radiance is proportional to a local average of the induced temperature field whereas the back-

scattered signal gives the time dependence of the incident laser intensity.  The beam profile is 

accurately measured using a beam analysing device made of a scanning slit attached to the 

moving mirror of a Michelson interferometer.  The experimental set-up is more precisely 

described in section 2. 

 The theoretical waveform of the periodic temperature field is given by a linear 

relationship between the thermal source term and a heat diffusion operator.  Fourier analysis of 

the heat conduction problem shows that the latter behaves as a low-pass filter whose cut-off 

frequency depends on the thermal diffusivity.  Section 3 presents the mathematical model used 

to solve this 3D time-dependent heat conduction problem. 

 The thermal diffusivity is estimated from the experimental data sets by a non-linear least-

squares fitting to the model.  The algorithm is presented in section 4. 

 Experimental data on platinum, titanium, germanium and copper heated to about 900K 

in air are presented and discussed in section 5. 

2. EXPERIMENTAL SET-UP 

 A schematic of the photothermal set-up is shown in Fig. 1.  The sample's front surface is 

optically excited by an argon ion laser beam delivering a maximum power of 2 W at 514.5 nm.  

A laser scanner, driven by a programmable function generator, is used to periodically scan the 

beam across the sample's surface.  A CaF2 plano-convex doublet forms an image of a fixed 

point of the surface on to two optical detectors.  The doublet is used in 1 to 1 imaging ratio 



and has a numerical aperture of about 0.1.  The optical signal is the superimposition of the 

back-scattered laser light and the thermal radiance emitted by sample surface.  A longwave-

pass germanium beamsplitter is used to transmit wavelengths greater than 1.85 µm towards an 

InSb infrared detector (dimensions 0.1mm x 0.1mm) and to reflect shorter wavelengths 

towards a silicon detector which has a suppressed infrared sensitivity.  The infrared thermal 

radiance is filtered using a narrow bandwidth interference filter centred at 4.05 µm.  A narrow 

bandwidth detection has the advantage of minimising the effect of chromatic aberrations 

induced by the collecting lenses. 

 When a square wave is used to drive the scanner, the beam is periodically deflected on 

and off the targeted spot, producing a chopped laser excitation.  Unlike an optical chopper, 

the laser scanner can be operated reproducibly at very low frequencies with a short step time 

(<10 µs). 

 After preamplification, both the back-scattered signal and the thermal radiance signal 

are digitised using a 16 bits A/D card.  The data acquisition is triggered by a 100kHz clock 

signal generated by a frequency multiplier from the low-frequency signal that drives the laser 

scanner.  This synchronous sampling allows averaging of the signal over a great number of 

periods without significant drift or waveform distortion.  The averaging process is realised in 

real time by an infinite impulse response digital filter implemented with LabView.  The laser 

scanner driving signal is usually a 10 Hz square wave and typically the sampled sets of back-

scattered and thermal radiance data consist of N = 10000 points. 

 During this data acquisition, a small fraction of the excitation laser beam is sampled using 

a polarising beamsplitter cube and sent to a beam analysing device.  In order to measure the 



beam profile at the position of the sample's surface, the beamsplitter is placed at identical 

optical path lengths from the sample and the beam analyser. 

 The beam analyser (Fig. 2) is a scanning slit whose displacement is monitored by a 

Michelson interferometer.  A large area silicon photodiode placed behind a 10 µm wide slit is 

mounted on a motorised translation stage together with one of the interferometer mirrors.  

Using a 5 mW HeNe laser source, the movement of the assembly produces highly contrasted 

sinusoidal interference fringes which are detected by another silicon photodiode. Each fringe 

corresponds to a displacement equal to half a wavelength of the HeNe laser, i.e. ∆x = 0.3164 

µm.  An electronic trigger circuit generates a reference TTL signal from the fringes signal.  

Both the reference signal and the scanning slit signal are fed in an A/D card  and a LabView 

program is used to acquire one sample for every 10 fringes detected, equivalent to a slit 

displacement of 3.164 µm.  The accuracy of the beam profile measurement is assessed by 

fitting a Gaussian profile to the data.  The uncertainty on the beam diameter is typically 0.2%. 

3. MATHEMATICAL MODELING 

 With a laser spot of a diameter of about 2 mm and a scanning frequency greater than a few 

tenths of Hertz, the thermal perturbation is confined within a volume of about 1 mm3 for most 

materials.  Therefore, the heat conduction problem solved for a semi-infinite medium is 

appropriate. 

 Let us assume a periodically modulated laser beam incident on the surface of an opaque 

semi-infinite homogeneous material.  The absorbed laser light is converted into heat which 

diffuses in the material.  In the case of an chopped-like modulation, the source term of the 

thermal problem can be expressed as the product of a spatial term by a temporal term: 



 q x y z t f x y z h t( , , , ) ( , ) ( ) ( )= δ  (1) 

where f(x,y) is the 2D beam profile, δ is the Dirac distribution and h t( )  is the time 

dependence of the laser intensity.  The temperature field T(x,y,z,t) in the material is the 

solution of the 3D heat conduction problem defined by the following differential system [6]: 
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K and D are respectively the thermal conductivity and the thermal diffusivity of the material.  

h t( ) , a periodic function with a frequency γ , can be expanded in a Fourier series: 
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where 
~
hn  is the n-th component of the Fourier spectrum of h t( ) .  After a transient regime, a 

periodic regime is established in the material.  The temperature field can therefore be Fourier 

expanded: 
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The terms ~Tn  are the components of the Fourier spectrum of T(x,y,z,t).  Replacing T by its 

Fourier expansion in Eqs. (2) leads to a differential system for each component ~Tn : 
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Let ~ ( , , )v u u zn x y  be the 2D Fourier transform of ~ ( , , )T x y zn  with respect to x and y: 
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The spatial frequencies ux and uy form a continuum in the real space because of the unbounded 

conditions (5d) and (5e) [7].  Replacing ~Tn  by its Fourier decomposition leads to a 1D 

differential system for ~vn  as a function of the space variable z: 
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where 
~

( , )f u ux y  is the 2D Fourier transform of the beam profile. 



The solution of the differential system defined by Eqs. (7), expressed at z=0, is: 
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Eq. (8) shows that the surface temperature in the Fourier domain is the algebraic product of 

the beam profile Fourier component 
~

( , )f u ux y  by the Fourier component of the laser intensity 

time dependence 
~
hn  and by a thermal transfer function H u un x y( , )  defined by: 
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The surface temperature field in the Fourier domain can be seen as the result of a linear filter H 

acting on two input functions 
~
f  and 

~
hn : 
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In the experimental set-up, a photodetector of dimensions xd and yd is used to detect the 

thermal radiance emitted by the surface in a small spectral band centred around the detection 

wavelength.  In the limit of small laser heating, the signal S(t) induced by the laser periodic 

heating is proportional to the periodic surface temperature, averaged on the detection zone.  

The proportionality factor, which includes the local emissivity, the first derivative of the Planck 

function, the numerical aperture of the optics and the instrumental gain, is omitted for clarity: 
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S(t) is also a periodic function and therefore can be expressed as a Fourier series with 

coefficients 
~
Sn .  According to Eq. (11), 

~
Sn  is given by: 
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After replacing ~Tn  by its 2D Fourier expansion and performing the double integration over x 

and y, Eq. (12) becomes: 
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where sinc(x)=sin(x)/x.  Let us define the detector transfer function T u ux y( , ) : 

 T u u x u y ux y d x d y( , ) ) ( )= sinc( sincπ π  (15) 

The Fourier components 
~
Sn  of the periodic signal can now be expressed as: 
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Assuming a rotational symmetry of the laser beam, Eq. (16) becomes: 
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The periodic signal S(t) is given by the following Fourier series: 
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 The numerical implementation of the model was done using MATLAB.  The Fourier 

spectra 
~
f  and 

~
hn  are computed using the Fast Fourier Transform algorithm (FFT) applied to 

the beam profile and the backscattered light data.  The double integral in (17) is approximated 

by a double sum over the positive spatial frequencies.  S(t) is computed according to Eq. (18) 



by inverse FFT.  The computation of a set of 10000 values of  S(t) takes about 10 seconds on 

a 350 MHz PC. 

3.  PARAMETER ESTIMATION 

 Although the temperature and the photothermal signal are given by linear relationships, 

the model described in section 2 is not linear with respect to the thermal diffusivity.  This 

parameter must be therefore estimated by a non-linear parameter estimation procedure aiming 

to fit the model to the thermal radiance data.  Assuming Gaussian white noise with zero-mean 

and uniform variance, the least-squares technique provides minimal variance estimators [8].  In 

order to avoid any bias, the experimental data are not normalised.  Instead, instrumental 

parameters (offset, gain and arbitrary time origin) are estimated together with the diffusivity in 

the form a four-parameter vector m t D offset gain origin= ( , , , ) .  The Gauss-Newton 

iterative algorithm is chosen to perform the minimisation of the least-squares cost function.  In 

this technique, the first partial derivatives of the model with respect to the parameters are 

needed to compute the N x 4 Jacobian matrix G of the problem: 
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The partial derivative with respect to the diffusivity is approximated by a finite-difference.  

Since the data depend linearly on the instrumental parameters, the computation of the 

corresponding partial derivatives is straightforward [8]. 

 This parameter estimation problem is well-conditioned and the algorithm usually 

converges after 3 or 4 iterations when realistic initial values are used.  An estimate $σ2  of the 

variance of the noise is given by: 
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where S texp i( )  and S ttheo i( )  are respectively the measured and the fitted theoretical data.

 The main source of error in the joint estimation of the diffusivity and the 3 other 

parameters is the noise in the thermal radiance data, which is essentially due to the background 

photon noise.  The covariance matrix Cm of the estimated parameters is evaluated using the 

linear least-squares theory: 

 C G Gt
m

= −$ ( )σ2 1  (24) 

where G is evaluated using the optimal values of the parameters.  The number of degrees of 

freedom of this type A uncertainty is N-4, which typically is 9996. 

 Because of the very good accuracy on the measurement of the beam profile, the 

induced uncertainties are considered to be negligible compared to the uncertainty induced by 

the thermal radiance noise. 

4.  EXPERIMENTAL RESULTS  

 The thermal diffusivities of platinum, germanium, titanium and copper have been 

measured. Each sample was placed in a tube furnace and heated in air to about 900 K.  In the 

case of titanium and copper, an oxide layer formed on the surface.  A beam diameter of about 

2 mm and a scanning frequency of 10 Hz were used. The measured boundary conditions for 

the platinum sample are shown in Fig. 3.  The laser power was set at about 100mW in order 

to minimise non-linear effects in the thermal radiance signal.  A temperature perturbation of 

about 2 K was induced in the samples.  To compensate for the very low corresponding 

infrared signal level, a large number of periods, typically 1000, were averaged according to the 

procedure described in section 2.  The thermal radiance signal measured on platinum and the 



best fit are shown in Fig. 4. Table I presents the results obtained with the set of samples.   

 The thermal diffusivities of platinum, titanium and germanium were measured with an 

accuracy of about ±1.5% at a confidence level of 95%.  These results are in good agreement 

with the literature values [9].  Platinum, germanium and titanium gave excellent agreement 

between experimental and theoretical data.  In contrast , the data collected with copper 

showed residual peaks after the fitting procedure.  In this case, the homogeneous model for 

the sample is almost certainly not appropriate because of the thick black oxide layer formed at 

high temperature in air. 

6.  CONCLUSIONS 

 By accurately measuring the boundary conditions associated with a laser-based thermal 

experiment, it has been demonstrated that the thermal diffusivity of solids can be measured 

with an accuracy of about ±1.5%.  The results presented in this work concerned platinum, 

titanium, germanium and copper.  Although the accuracies of the literature values are not 

generally as good, they agree well with our measurements. However, the data obtained with 

copper showed that the technique does not give very good results when the surface oxidises 

too much.   A good validation of the technique would consist in measuring the thermal 

diffusivity of a very high purity sample in a controlled atmosphere as a function of temperature. 

  Using the linear system theory, it is theoretically possible to perform a real-time 

estimation of the thermal diffusivity by adaptive filtering.  Such a filter could be implemented on 

a digital electronic circuit allowing the thermal diffusivity to be estimated 'on-line'.
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Fig. 1 Photothermal radiometry set-up 
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Fig. 2. Beam analyser device 
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Fig. 3.  Boundary conditions used for the analysis of platinum. (a) Beam profile. (b) Laser 

intensity time dependence.  The smaller graphs shows the finite rise time of the laser excitation 

(~0.2 ms). 
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Fig. 4. thermal radiance signal measured on platinum. (a)  Experimental data (noisy signal) and 

best fit (continuous line). (b) Data residuals after fitting. 
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Table I.  Experimental results on the thermal diffusivity of pure metals 
 
 
material  purity 

 

 

 

(%) 

T 

 

 

 

(K) 

surface state this work 

• thermal diffusivity  

• standard deviation 

• 95% conf. interval 

(m2s-1) 

literature [9] 

• thermal diffusivity 

• accuracy 

• conf. interval 

(m2s-1) 

platinum 99.99 900 polished 

no oxide layer 

D = 2.56 10-5  

σ = 2 10-7 

[2.52 ; 2.60] 10-5 

D = 2.46 10-5 

± 8 % 

[2.3 ; 2.7] 10-5 

titanium 99.6 800 polished 

transparent  oxide 

layer 

D = 6.43 10-6  

σ = 4 10-8 

[6.35 ; 6.51] 10-6 

D = 6.99 10-6 

± 10 % 

[6.3 ; 7.7] 10-5 

germanium 99.999 900 unpolished 

no oxide layer 

D = 8.70 10-6 

σ = 7 10-8 

[8.56 ; 8.84] 10-6 

D = 9.00 10-6 

± 13 % 

[7.8 ; 10.2] 10-6 

copper unknown 900 polished 

black oxide layer 

D = 8.9 10-5  

σ = 2 10-6 

[8.5 ; 9.3] 10-5 

D = 9.35 10-5 

± 6 % 

[8.8 ; 9.9] 10-5 
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